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A GEOMETRIC INTERPRETATION OF LAGRANGE MULTIPLIERS

» 0
R. C. Kso

The RAND Corporation, Santa Monica, California

A fundameptal assumption ccmmon to all economic analyses is the
maximization or minimization of an objective function (representing,
say, utility, cost, welfare or the like) subject to certain con-
straints. Statements of the type: ™A consumer with given income
maximizes his totel utility only if his marginal utilities for the
various commodities are proportional to their prices,” are almost
commonplace in economic texts and are generally described as "equilib-
rium conditions” of the economic procees under consideration. Never-
theless, when these meaningful economic theorems are rresented to
even the more advanced students, the argument is usually shrouded
with a complete or partial mystery around the so-called Lagrange
multipliers. Very little explanation is given to these multipliiers
themselves except that they are the coefficients used to formm s cer-

tein Lagrangian function, the extremization of which leads to the

*
I em indebted to Professor A . A . Alchian for calling my astten-
tion to this problem.

*‘Any views expressed in this paper are those of the author.
They should not be interpreted as reflecting the views of The RAND
Corporation or the official opinion or policy of its govermmental
or private research sponsors. Papers are reproduced by The RAND
Corporation as a courtesy to members of its staff.
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desired equilibrium conditions.. This paper is devoted to a pedagogic

clarification of the intrinsic meaning of these multipliers themselves

and & natural reformulation of the equilibvrium conditions wvhich per-

mits a better insight into the nature of constrained extremm probleiis
in economics.

Let
(1) y = £(x)

be a real-valued function of a single variable x. The function f may
represent the short-run cost curve of a production process with only
one variasble factor. If f is eufficlently smooth (i.e. x is infinites-
imally divisible) a necessary condition for a (relative) minimm of {1)

is, as is well known,

(2) g% = f*'(x) =0,

and a sufficient condition for a (relative) minimum of (1) is (2) plus

a%s ¢
(3) L o) == fx) >0
dx dx

‘Cf. inter alias the following well known economic texts: R. G. D.
Allen, Mathematical Anelysis for Economists, london: MacMillan, 1949,
pps» 366-367; idem, Mathematical Economfcs, London: MacMillan, 1956,
op. 610, 614; D. W. Bushaw end R. W. Clower, Introduction to Mathematical
Economics, Homewood, Illinois: Irwvin, 1957, p. 331; J. M. Henderson and
R. E. Quandt, Microeconomic Theory, A Mathematical Approach, New York:
McGraw-Hill, 1958, pp. 273-27L: J. R. Hicks, Value and Capital, 2nd ed.,
Londcn: Oxford, 1946, p. 30%5; P. A. Samuelson, Foundations of Econamic
Analysis, Cambridge, Massachusetts: Harvard, pp. 362-365; and Taro
Yamane, Mathematics for Economists, Englewood, New Jersey: Prentice-Hall,
1962, pp. 116-123. -
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Geometrically, (2) states that the tangent vector to the curve C
defined by (1) must be horizontal; and (3) states that it is in-

creasing in slope around amy root x° of (2). (Figure 1)

(o}
X

Figure 1

A more easily generalizable geometric interpretation of (3) is the
following: Any function £ pussessing sufficient number of derivatives
(i.e., sufficlently smooth) may be expanded imto a Taylor's series:

.2f

\ o a? 0. ld 0.2
fx) = f{x") & ={x = x) ¢ z—=(x = x)

X 2. 0

dx
.n

(L) 1 &%, 'n
+...+—'-—-—(.(-X'<s~,@

ne. n
ax

where all derivatives are to be evaluated at x°. That is, the value
of £ at x may be represented by its value at xo, together with all
derivatives of £ at x°. Consequently, if x° 15 to be a relative minte
mum, all sufficiently close neighboring x must not yleld a smaller

y = f(x), i.e.

(5) f(x) - £(x°) 2 &,

s
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or in ‘teyms of (L),

»
(6) %da—é(x-xo)ezﬂ .
dx

since at x°, % = 0; and 1f x 1is sufficiemtly close to xo, the term
showvn in (6) will dominate the coabhinad effect of all other terms in
the expansion (4) becsuse all remaining tearms involve x - x° to a
higher order. That (6) is equivalant to (3) is obvious.

If £ 1s now a function of two indapendent variables, (1) may be

revritten as
(7) Y = f(xl, %)

and a pair of necessary conditicis corresponding to (2) are

(8) %l-tx =0 , ;;lsf* 20 .
1 1 e 2

These conditions state that the tasgent vectors 6 the surface 812

defined by (7) in the directions of In¢reasing x, and x, must be

horizontal, that 4s, paraliel to the XX, plane. (Pigure 2) If

£ 1s sufficiently emooth, its Taylor expansion around any root x°

of (B8) is glven by

ey _ o o of _ O f . _.©
f(xl,,, xa) = f(xl, xa) + a—-——xl (xl Xy + t)—X2 (xa XZ)
2 2
1§ £, .92 o of 22 (e _4°
O L RS GRS A T
1 8
3&‘_1' 0,2
+ -—;’, (}(@f-_-xa) + P
bx;l .

0
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By an argument similer to that used to deriyeq {6), & eurficlent con-
dition for x° to be a (relative) minteum is °

2 2 ‘
: 1 (¢ 0,2 It o o 321' 20> .
(1-@) 3 ‘lax (!1-!1) ¢ 2 b*l—Tx; (xl‘xl) (la-xa) + 5:2 (xaox;) } = O

[

he tangent vectors (dx,, 0) = (x, - 1°, 0) and (0, ax,) = (0, x, - 32%

G,

€0 the surfece (7) at x° determine a 2-dimensional tangent plane

és,, te 8 Since x° is to be a relative minimun, all sufficiently

12 12°
close neighboring points must not yleld a smaller y, pcints on the
tangent (dxl, o), (o, dx?) being only specisl csses. More generally,
points on eny vector dx (d:?l, 6&5.4) et :° which s & linear combina-
tion of tax,, 0), (9, dxe) mist elao not vie.c s gzsller v. Since

(ax,, v), (0, dxe) span Oor form & basis of dS dx may be represented

10
&8

(11) (dx,

vhere cos a,, co0s a, are the direction cosines of 4x with respect to

2
the local coordinate system on dsl‘: with origin at x°. Consequently,
@ strengthened necessary condition for a relative mini g 3t x°, wvhich

includes the twe equations in (3) es special cases, i=

(12) Vf:.a_fcoan +-a—£coso = 0
d;-axl 1 axz €

Vhere (conal, cos nz) are the direction cosines of an arbitrary tangent

d:f is called the directional derivative of

£ in the direction dx. Also, a strengthened sufficient condftion for

wvector dx in ds,, et . 9

& relative misimm at x° is e By taking the directional derivatives of

£, ﬁ'} again in the direetiom d%x,
2 ,

2 .

)
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¢ 2, 2 :
£ “ wa‘ b > ¢
w o s o] v& -—-‘ sa, % (
{13) =3 oS a T &x ees a, €o @ costa 0

Y E
= £
fer the chosen arbitrary tangeut weetor 4x in 4, at x°. ' R
Tha tangent plane 4812 at eny polat X om s $8 defined by the

linear terms in the sxpansien (9}, .e.,

o -~ Ay f ~ ?f ’.
(%) y -6, 8, 5% CRENEY L% )

vhere (xl, X5 y) is @ point in dS,,, and the partie! deriveiives are
to be cvaluated at x. To put the metter dilferently, If Sl.e fteelr
is already & plane, then the expansion (9) at amy voint on 1t must
be exact vith only the linear teras, i.e¢., all higher-order terms
must vanish identicelly. The norusl to the tangent plane dS,, at %
aleo called the gradient vector vf to 8, st %, has corpoents pro-

porticnal to

f1c) caf a ?

N+// === 9§ &— -1)
LS 1P

At @ relstive mintmum point x° ca S1p» (8) bolds and thus in (ik)
Y= rfx;, xg) identically, vhich is another wveay of saying that 4818
at x° is parallel to the Xy X, - piane (called the bese plane)} and
at distance t(x;_, xg) from it. At an erbitrery point?oa 855 the
left side of (14) peed not vanigh; #0 vill the right sfde not also.
But the right side of (1%) 1s the same 8» U.-f defined in (12} 1f we

dax
choose a point (xi, X, y) in asm at X such that




(16) xét-:a%imosol , x:-;\:cosa

Since {cos @,s cOs '0'23) represents a unit vector with respect to the
iocal coordinate gystem in aS;59 Yz T is pre-
cisely the canpovent (1.e. projection) of vf in the direction dx.

(12) states, tucrefore, thet at s critical point x° on S,,, the pro-
Jection of the gradiemt vector 9f in every direction dx in &S, vesishes,
and (14) shovs that at & noncritical point %ot 812, the projection of
V£ on d3,, need not vanish for ell directions éx !n d8,,. This re-
sult applies generally to spaces of dircnsions greater than 2.

On the basis of the above geonetric concepts, it is now poe-
sible to give an intrinsic characterization of lagrange mltipliers.
Consider, for exsumple, a constrained minimm problem of the followving
type: MWinimize () subject to |

(17) ¢(x1, xz) =0 .

(17) ¢Gafines a curve in the base plane, and minimum of £ is to be
sought among all points x = (xl’ x2) lying om this curve C. At exy
such (relative) minimm point x°,the directiomal derivative Vf of £
along the tangent to C must vanish by (12), where cos ay) cO8 a,
denote the components 0f the unit tangent dx to € at x°. However, (17)\
shows that

? .
(18) vdxggs;-:co;al-oﬁ:cosaano

also at this point. Coasequently, v dxf and Vv ax® muet be collinear,

i.e., for scme scalsr )\




vhere 4x is the tangsat vector to C defined by (17). (19) is
aguivalsnt to

(20) £, =rAg - ‘xz"“xz

vhich are the usual conditions derivadble froa differegtfation of the

Lagrangian function. A sufficient condition for & relative minimm

at x° s (13) vith cosa,, cosa , being again the cauponents of dx

(the tengent to C at x°) vith respect to the local coordinate system
o

at x .

Generalizstion of tae above geametric characterization of lagrange
multiplierg to speces of higher dimensions is immediate. Let

(21) y~ = f(!lp x(zg eo oy xﬂ)

sgain denote the ot iective function to be extremized, and

(&) ‘J x&@ XT_, PP xn) =0 (j = 1, eeoy r(gz‘»

denote a set of independent side constraints. Each 83 defines @
hypersurface 83 in the bese plane (i.e., the (xl -, xn)-phm &n
(n + 1)-dimensional spece E*L vith the last axis y). The intere

section

r
(23) Si2.0r = Myia 5

af these hypersusfaces in generwl yields an {n - r)e-dizensfonal sar-
face in the base plane. At @ eritical polimt. ”iﬁ = f‘l?_g S i’ﬁ\) on,
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Sy5...-» & tangent space dS,, _ generally exists with basis vectors

12 12-
(dx)l, -, (dx')nar, and the directional derivative vf of f along each
such basis vector must vanish. This says that vf must be orthogonal to
to 48y, .p? OF v$ lies in ds‘{‘e___r, the orthégonal camplement of

)
Sy, ,op OF % . But (22) shows that

Js
A S e . O .
(2 ) i=1 axi dxi ¢ (u 1‘ eseqg L/

also at xoi Hence, 4f dx » (dx, --+, dx_ is chosen td range over

the hagls veetors (dx)l, -, (d_,{’n-r 2 35y, e (2%) meredy ehovs

» @12
that each ng (321, 2, ®==, »} *: 2ls. crthogsnal %o ds,,_ o But
ir g, (321, ==-, r) are iadepender- oL o--e, g would form a basis
o - -
da
for dsu wmol since
1
{25} dia a8, + dim dS,. : n
s s oo e P of

et any reguler poiat on Sy0.eap: Therefore, for some scalars Ay ===ehg
. 2

we must pave

26 ...!'
(26) Ve 21 X:;?g&

vhich gives in eqnptnent form,

,zf a T y %g: M = %
(27) -;l:- 8 43:1 Ké s-; (i = ly eeey D

These form & system of n equations in n + r unknowns xl,*—-, xn;

\l,nnu, A

ditional equations are to be added. Consequently, the Lagrange multi-

£+ But since (xl, .- x“f must also satisfy (22), r ad-

pliers are merely coefficlents used in expressing a certain linear

dependence relation among the gradient vectors to f and gj's.
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The sufficiency condition i1s also easily generalized. With re-
spect to the basis vectors (dx)l, ceey (@x)®T of dS,, __p» 8 typical

unit tangent vector dx in ds,,___. hes the form

- n-r k
(28) dx = 2k=1 (dx) cos a

)

vhere cos ay, --=, COs o __ are the direction cosines

of dX with respect to

1

(ax)”, ---, (ax)" . Then

2
(29) v 2_ £ = V_(V_!) = 2‘_.‘-;’1 —2—-}; €os o, €OB Gj 2 0
dx dx dx “1Jvl dXg0X g =

together vith (27) yields a relative constrained minimm at x°. Al-
ternatively, if z = (zl —--, zn) is any vector in the tase plane, a
?

relative constrained minimum et a poirt x° $s assured by {27} and

¥ o1 2
Z'Hz = (z] 9 o0y zn) }:E axlaxn 3 zl
("’lﬂ Ay s o & o o s @ . ®
ax bx.' a . K4 . ’
a 1 axn / \ Zn /
i 32f >

— Z. Z. ® O

Li,j:l 3xiax3 i%3

- 4

for all z orthogonal %o q;l, ey DEL- That is, for all Zys =77, 2
satisfying

n

€. . )
(31) 2?;1 g—-x—‘l Zi 8 @ (\‘)3 3 l.s e ©Fy ’F)
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That (30) and {31) way be translated into appropriate properties of

the bordered Hessian

28 3
o . .. .o i
0 0 EEE 'B_E:
bxl X
2 .
(32) 26 28, 2 3
axl axl bxz, axlbxn
25 diy X 2°¢
%, %, 0xp0%y C O dx
n
may also be readily established.
2
A
Y




